Singular Hermitian metrics on holomorphic vector bundles

Singular Hermitian metrics on holomorphic line bundles. L a holomorphic line bundle over a complex manifold X

DEFINITION. A singular metric on L is locally giver by

$$h = e^{-2\varphi}$$

where $\varphi \in L(U, loc)$.

• The curvature form of h is locally given by

$$\Theta = i\partial\overline{\partial}\varphi$$

which is a (1, 1) current.

- h is called positive if Θ is positive (1, 1) current.
- The multiplier ideal sheaf $\mathscr{I}(h) \subset \mathscr{O}_X$ associated to a singular Hermitian metric h is defined as: $\mathscr{I}(h)_x$ consists of germs of holomorphic function $f \in \mathscr{O}_{X,x}$ such that

$$|f|^2 e^{-2q}$$

is integrable in a neighborhood of x.

- $\mathscr{D}^{p,p}(X)$
- $\alpha_1, \alpha_2 \cdots, \alpha_{n-1}$ (1,0) with compact supports
- $\Theta \wedge i\alpha_1 \wedge \overline{\alpha}_1 \wedge \cdots \wedge i\alpha_{n-1} \wedge \overline{\alpha}_{n-1} = Tidz_1 \wedge d\overline{z}_1 \wedge \cdots \wedge idz_n \wedge d\overline{z}_n, T(f) \ge 0$

 Θ is closed positive (1,1) current if and only if $T = i\partial\overline{\partial}\varphi$ where φ is p.s.h locally. If h is a smooth metric $\mathscr{I}(h) = \mathscr{O}_X$

THEOREM 1. If h is positive, $\mathscr{I}(h)$ is a coherent ideal sheaf.

PROOF. Use L^2 existence theorem.

THEOREM 2. (Nadel vanishing theorem) (X, w) weakly pseudoconvex, L admits a singular Hermitian metric h such that

 $\Theta_h(L) \ge \epsilon \omega$

where ϵ is a positive continuous function on X. We have

$$H^q(X, K_X \otimes L \otimes \mathscr{I}(h)) = 0$$

for q > 0.

• sections of L^m iduces positive singular hermitan metric on L.

Aim: Prove similar results in the setting of vector bundles.

Cataldo, 98. Consider singular Hermitian metrics on vector bundles obtain effective results about global generated poblices about

$$K^a_X \otimes L^b \otimes E$$

• Find a_0, b_0 such that

$$K_X^a \otimes L^b \otimes E$$

are globally generated (separated) for $a = 1, 2, b \ge b_0$.

THEOREM. (Main theorem) Let X be a projective manifold of dimension n, $E \to X$ a holomorphic vector bundle of rank $r, L \to X$ an ample line bubdle.. $N = \min\{n, r\}$. Asymme that E is N - nef and p is a positive integer, If $m \ge m_1(n, p) = \frac{1}{2}(n^2 + 2pn - n + 2)$, then for any set of p distinct points $\{x_1, x_2, \cdots, x_p\}$ of X, the global sections of $K_X \otimes L^m \otimes E$ can separate x_1, x_2, \cdots, x_p . **t-nef vector bundes.** V, W complex vector spaces, a tensor $\tau \in V \otimes W$ can be intepreted as linear maps

$$\alpha_{\tau}: V^* \to W$$

 \mathbf{or}

$$\beta_{\tau}: W^* \to V$$

We define the rank $\rho(\tau)$ of $\tau \mathrm{as}$

$$\rho(\tau) = rank(\alpha_{\tau}) = rank(\beta_{\tau})$$

• $\tau \in V \otimes W$ is decomposible, τ can be written as $\tau = v \otimes w, v \in V, w \in W$ if and only if $\rho(\tau) \leq 1$

DEFINITION 3. θ_1, θ_2 are Hermitian forms on $V \otimes W$, t is a positive number, we say

$$\theta_1 \geq_t \theta_2, (\theta_1 >_t \theta_2)$$

if $\theta_1-\theta_2$ is semipositive (positive-definite) on all tensor $\tau\in V\otimes W$ with $\rho(\tau)\leq t$

 $\rho(\tau) \leq t : \tau = \sum a_i v_i \otimes w_i, \dim L(v_i) \leq t, \dim L(w_i) \leq t$

Let E be a holomorphic vector bundle over $X,\,h$ a hermitian metric on $E,\,{\rm the}$ curvature form

$$\Theta_h(E) \in H^0(X, \Omega^{1,1}(Hom(E, E)))$$

it can be intepreted as a Hermitian form on the bundle $T_X \otimes E$.

• L is nef if and only if for any $\epsilon > 0$, L admits a Hermitian metric h_{ϵ} such that

$$\Theta_{h_{\epsilon}}(L) \geq -\epsilon \omega$$

DEFINITION 4. (1) E is called t -positive (semi-positive) if E admits a Hermitian metric h such that

$$\Theta_h(E) >_t 0, (\Theta_h(E) \ge_t 0)$$

(2) E is called t - nef if for any $\epsilon > 0$, E admits a Hermitian metric h_{ϵ} such that

$$\Theta_{h_{\epsilon}}(E) \geq_t -\epsilon \omega \otimes Id_{E_{h_{\epsilon}}}$$

where ω is a hermitian metric on X.

- 1 positive = Griffiths positive
- $N positive = Nakano positive , N = min\{n, r\}$

Singular Hermitian metric on vector bundles. From now on, we assume that X is a complex manifold of dimension n and $E \to X$ a holomorphic vector bundle of rank r.We denote by $N = \min\{n, r\}$.

DEFINITION 5. h is called a measurable metric on E if h is a section of the smooth vector bundle $E^* \otimes \overline{E}^*$ with measurable coefficients and h is a almost everythere positive-definite Hermitian form on E.

- in local holomorphic frame over U, $h = (h_{ij})_{r \times r}$, h_{ij} are measurable functions on U
- h is a smooth hermitian metric, the curvature $\Theta_h(E)$ is given by

$$\Theta_h(L) = -\partial \partial h \cdot h^{-1} + \partial h \wedge h^{-1} \partial h \cdot h^{-1}$$

• Even if assume the measurable metric has L_{loc} coefficients.

- Given a measurable metric h on E, one can associate four subsheaves of $\mathscr{O}(E)$:
 - $\mathcal{O}(E) \otimes \mathscr{I}(h) \subset \mathcal{O}(E)$: here the multiplier ideal $\mathscr{I}(h) \subset \mathcal{O}_X$ is the analytic sheaf of germs of holomorphic functions on X such that $\mathscr{I}(h)_x$ consists of germs $f_x \in \mathcal{O}_{X,x}$ such that $|f_x s_x|_h^2$ is intebrable in a neighborhood of x for any $s_x \in \mathcal{O}(E)_x$. locally E has a holomorphic frames $e_1, \dots, e_r, |f_x e_i|_h^2$ is integrable in a neighborhood of x for $1 \le i \le r$
 - $e_1, \cdots, e_r, |f_x e_i|_h^2$ is integrable in a neighborhood of x for $1 \leq i \leq r$ • $\mathscr{E}(h) \subset \mathscr{O}(E)$: for any $x \in X$ and $s_x \in \mathscr{O}(E)_x$, $s_x \in \mathscr{E}(h)_x$ if and only if $|s_x|_h^2$ is integrable in a neighborhoos of x

Moreover, we *h* induce a measurable metric \tilde{h} on the tautological line bundle $L = \mathscr{O}_{P(E)}(1) \to P(E), \mathscr{I}(\tilde{h})$ ideal sheaf of $\tilde{h}, \pi : P(E) \to X$

• $\pi_* \mathscr{O}(L) \otimes \mathscr{I}(\tilde{h}) \subset \mathscr{O}(E)$

• In general $\mathscr{O}(E) \otimes \mathscr{I}(h) \subset \mathscr{E}(h)$

EXAMPLE 6. $E = \triangle \times \mathbb{C}^2 \to \triangle$ measurable metric $h = diag\{e^{-2\log|z|}, e^{-4\log|z|}\}$ $f_x \in \mathscr{I}(h)_x |f_x|^2 e^{-2\log|z|}, |f_x|^2 e^{-4\log|z|}$ integrable around $x, \mathscr{I}(h) = (z^2)$ $\mathscr{O}(E) \otimes \mathscr{I}(h) = z^2 \cdot \mathscr{O}_X \oplus z^2 \cdot \mathscr{O}_X$ $\mathscr{E}(h) = z \cdot \mathscr{O}_X \oplus z^2 \cdot \mathscr{O}_X$

DEFINITION 7. (X, E, h, Σ, h_s) is called a singular hermitian metric on E if

- $\Sigma \subset X$ is a closed subset of measure 0;
- h_s is a sequence of smooth hermitian metrics of $E \to X$ such that

$$\lim_{s \to \infty} h_s = h$$

in \mathscr{C}^2 topology on $X \backslash \Sigma$

 $\Theta_h(E) = \lim \Theta_{h_s}(E) \text{ on } X \setminus \Sigma$

(E, h) is Griffith positive if and only if for any local holomorphic section s of E^* , $\log |s|_{h^*}$ is plurisubharmonic

h measurable metric, (E, h) is called positive if for any local holomorphic section s of E^* , $\log |s|_{h^*}$ is plurisubharmonic

DEFINITION 8. Let ω be a hermitian metric on complex manifold X. Let (X, E, h, Σ, h_s) be a singular Hermitian metric on E, θ a real continuous (1, 1) form on X and t a positive integer. We say

$$\Theta_h(E) \ge_t^\mu \theta \otimes Id_{E_h}$$

If there exist a sequence of continuous hermitian froms θ_s on $T_X \otimes E$ and continuous functions λ_s, λ on X such that

(1) The hermitian metrics h_s are increasing:, i.e., for any $x \in X$ and $e \in E_x$ we have

$$|e|_{h_s} \le |e|_{h_{s+1}}$$

 $\begin{array}{l} (2) \ \theta_s \geq_t \theta \otimes Id_{E_{h_s}} \\ (3) \ \Theta_{h_s}(E) \geq_t \theta_s - \lambda_s \omega \otimes Id_{E_{h_s}} \\ (4) \ \theta_s \to \Theta_h(E), \quad , a.e. \quad on \ \mathbf{X} \end{array}$

(5) $\lambda_s \to 0$ a.e. on X

- (6) $0 \le \lambda_s \le \lambda$
 - (E,h) is a Nakano positive vector bundle over a Kahler manifold (X,ω) , we have

$$\Theta_h(E) \geq^{\mu}_N \epsilon \omega \otimes Id_{E_h}$$

for some positive continuous function ϵ

- Motivation:
- Demailly 82 : Let $h = e^{-2\varphi}$ be a singular Hermitian metric on a line bundle L and θ a continuous real (1, 1) form on X such that the curvature current T satisfying

 $T \geq \theta$

in the sense of currents, then we can obtain a collection of data (X, L, h, Σ, h_s) such that it is a singular Hermitian metric on L with

$$\Theta_h(L) \geq_1^\mu \theta \otimes Id_{L_h}$$

THEOREM 9. $(L^2 \text{ existence theorem})$ Let (X, ω) be a weakly pseudoconvex Kahler manifold.

E holo vector bundle of rank r

q > 0

h is a singular Hermitian metric on E with

$$\Theta_h(E) \ge_{n-q+1}^{\mu} \epsilon \omega \otimes Id_{E_h}$$

for a positive continuous function ϵ on X

 $L^2_{p,q}(\dot{X}, E, loc) = the space of (p,q)$ forms with values in E and coefficients are locally integrable on X

Then for any $g \in L^2_{n,q}(X, E, loc)$ with

• $\overline{\partial}g = 0$

•
$$\int_X |g|_h^2 dV_\omega < \infty$$

• $\int_X \frac{1}{\epsilon} |g|_h^2 dV_\omega < \infty$

There exists $f \in L^2_{n,q-1}(X, E, loc)$ such that

 $\begin{array}{l} \bullet \ \overline{\partial}f = g \\ \bullet \ \int_X |f|_h^2 dV_\omega \leq \frac{1}{q} \int_X \frac{1}{\epsilon} |g|_h^2 dV_\omega \end{array}$

THEOREM 10. Let h be a singular Hermitian metric on E such that

$$\Theta_h(E) \geq^{\mu}_N \theta \otimes Id_{E_h}$$

where $N = \min\{\dim X, r(E)\}$, then $\mathscr{E}(h) \subset \mathscr{O}(E)$ is a coherent ideal sheaf.

THEOREM 11. If (X, ω) is a weakly pseudoconvex Kahler manifold, h is singular Hermitian mertric on hol vector bundle E such that

$$\Theta_h(E) \ge^{\mu}_N \epsilon \omega \otimes Id_{E_h}$$

where ϵ is a positive continuous function on X and $N = \min\{\dim X, r(E)\},\$

$$H^q(X, K_X \otimes \mathscr{E}(h)) = 0$$

for q > 0.

Use the above Nadel type vanising theorem, we can prove the main theorem by techniques of Siu 95.

Effective results on vector bundles.

THEOREM 12. Let X be a projective manifold of dimension n, E a holomorphic vector bundle of rank r, $N = \min\{n, r\}$. Assume that E is N-nef and A, L are ample line bundles on X. Then we have the following:

- (1) If $m \ge m_1(n,p)$, then the global sections of $K_X \otimes E \otimes (mL)$ seperate arbitrary p distinct points of X.[For p=1 we have: If $m \ge \frac{1}{2}(n^2 + n + 2)$, then $K_X \otimes E \otimes (mL)$ is generated by its global sections.]
- (2) If $m \ge m_2(n, p; s_1, s_2, \dots, s_p)$, then the global sections of $2K_X \otimes E \otimes (mL)$ generate simultaneous jets of order $s_1, \dots, s_p \in \mathbb{N}$ at arbitrary p distinct points of X. [For p = 1 we have : If $m \ge m_2(n, 1; 1)$, then the global sections of $2K_X \otimes E \otimes (mL)$ sperate arbitrary pairs of points of X and generate simultaneous jets of order 1 at an arbitrary point of X]
- (3) If $m \geq m_3(n,p;s_1,\cdots,s_p)$, the global sections of

$$(pn + \sum s_i + 1)K_X \otimes E \otimes (mL) \otimes A$$

generate simultaneously jets of order s_1, s_2, \dots, s_p at arbitrary p distinct points of X.

- (4) If $m \ge m_4(n)$, then the global sections of $(n+2)K_X \otimes E \otimes (mL) \otimes A$ sperate arbitrary pairs of points of X and generate simultaneous jets of order 1 at an arbitrary point of X
- (5) The global sections of $E \otimes (mL)$ sperate arbitrary pairs of points of X and generate simultaneous jets of order 1 at an arbitrary point of X as soon as

$$m \ge C_n(L^n)^{3(n-2)}(n+2+\frac{L^{n-1}\cdot K_X}{L^n})^{3(n-2)(\frac{n}{2}+\frac{3}{4})+\frac{1}{4}}$$

where $C_n = (2n)^{\frac{3(n-1)-1}{2}}(n^3-n^2-n-1)^{3(n-2)(\frac{n}{2}+\frac{3}{4})+\frac{1}{4}}.$

THEOREM 13. (L^2 existence theorem) Let (X, ω) be a weakly pseudoconvex Kahler manifold. L is a holo line bundle over X equipped with a positive singular Hermitian metric $h = e^{-\varphi}$ such that

$$\Theta_h(L) = i\partial\overline{\partial}\varphi \ge \epsilon\omega$$

for some $\epsilon > 0$. Denote by

 $L^2_{p,q}(X, L.loc) = the space of (p,q)$ forms with values in L and coefficients which are locally integrable.

For any $g \in L^2_{n,q}(X, L, loc)$ with

$$\begin{split} & \frac{q}{\partial g} = 0 \\ & \int_X |g|_h^2 dV_\omega < \infty \\ & There \ exists \ f \in L^2_{n,q-1}(X,L,loc) \ such \ that \\ & \overline{\partial}f = g \\ & \int_X |f|_h^2 dV_\omega \leq \frac{1}{q\epsilon} \int_X |g|_h^2 dV_\omega \end{split}$$

Demailly P39

• A complex manifold is called weakly pseudoconvex if there exists a smooth psh ψ on X such that

$$X_c = \{ x \in X : \psi(x) < c \}$$

is relatively compact in X for all
$$c > 0$$

• compact complex manifolds are weakly pseudoconvex.

LEMMA 14. (Grauert-Remmert, Coherent Analytic sheaf P111) Let \mathscr{I} be a coherent analytic sheaf on a complex space X,

$$\{s_i: i \in I\}$$

be a subset of sections of \mathscr{I} over X. Then the subsheaf \mathscr{I}_I of \mathscr{I} generated by $s_i (i \in I)$ is a coherent analytic sheaf.

 $f_x\in \mathscr{I}(h)_x$ if and only if $|f|^2e^{-\varphi}$ is integrable in a neighborhood of x $\varphi+C|z|^2\;\varphi$

LEMMA 15. (Nakayama Lemma)(A-M P22 coro 2.7)

Let M be a finitely generated A- module, N a submodule mof M, $a\subset$ the Jacobson radical of A. If

$$M = aM + N$$

we have M = N

LEMMA 16.)

(Atiyah-MacDonald coro 10.10) Let A be a Notherian ring , an ideal of A, M a finite generated A module and $M' \subset M$ a submodule. Then there exists an integer k such that

$$(a^n M) \cap M' = a^{n-k} \cdot ((a^k M) \cap M')$$

for all $n \geq k$.

 $A = M = \mathcal{O}_x, M' = \mathscr{I}(h)_x$

THEOREM 17. Let X be a complex manifold and L a hol line bundle on X. $h = e^{-\varphi}$ is a singular hermitian metric on L such that

$$\Theta_h(L) = i\partial\overline{\partial}\varphi \ge \theta$$

for some real continuous (1,1) form, the multiplier ideal sheaf $\mathscr{I}(h)$ is a coherent analytic sheaf.

PROOF. Since coherence is a local property, we can assume X is a ball in \mathbb{C}^n centered at x the coefficients of θ is bounded L is trivial over X

8

Let ω be the standard Kahler form on \mathbb{C}^n . S = the space of holomorphic functions f on X such that

$$\int_X |f|^2 e^{-\varphi} dV_\omega < \infty$$

$$\begin{split} \mathscr{F} \subset \mathscr{O}_X \text{ the subsheaf of } \mathscr{O}_X \text{ generated by } S \\ \text{Then we have} \\ \mathscr{F} \text{ is a coherent analytic sheaf.} (\text{Lemma 14}) \\ \mathscr{F} \subset \mathscr{I}(h) \\ \text{We will prove that } \mathscr{I}(h) = \mathscr{F}, \text{ or } \mathscr{I}(h)_x = \mathscr{F}_x \\ Step1 \text{ For any } x \in X \text{ we have} \end{split}$$

$$\mathscr{F}_x + \mathscr{I}(h)_x \cap m_x^l = \mathscr{I}(h)_x$$

for every positive integer l.For any $x\in X$, $f_x\in \mathscr{I}(h)_x$, we can choose a cut-off functio σ such that $\sigma=1$ in a neighborhood of x
 σf_x is a smooth function on X
 $\int_X |\sigma f_x|^2 e^{-\varphi} dV_\omega < \infty$
We can choose a constant C>0 such that

$$\theta + C \cdot i \partial \overline{\partial} |z|^2 \ge \omega = i \partial \overline{\partial} |z|^2$$

on X.

$$i\partial\overline{\partial}(\varphi(z) + C|z|^2) \ge \omega > 0$$

Take a strictly psh function

$$\varphi_l(z) = \varphi(z) + 2(n+l) \log |z-x| + C|z|^2$$

We twist the metric h by $h_l = e^{-\varphi_l(z)}$, then we have

$$\Theta_{h_l}(L) = i\partial\overline{\partial}\varphi_l = i\partial\overline{\partial}\varphi + 2(n+l)i\partial\overline{\partial}log|z-x| + C \cdot i\partial\overline{\partial}|z|^2 \ge \omega$$

Takea (0,1) form $g = \overline{\partial}(\sigma f_x)$ we have

$$\int_{X} |g|^{2} e^{-\varphi_{l}} dV_{\omega} = \int_{X} |g|^{2} e^{-\varphi(z)} e^{-2(n+l)\log|z-x|} e^{-C|z|^{2}} dV_{\omega} < \infty$$

By Theorem 13 there exists a locally square integrable function f on X such that

$$\overline{\partial}f = g = \overline{\partial}(\sigma \cdot f_x)$$

$$\int_X |f|^2 e^{-\varphi_l} dV_\omega \le \int_X |g|^2 e^{-\varphi_l} dV_\omega < \infty$$

Take $F = \sigma f_x - f$, we have $\overline{\partial}F = 0$, hence F is a holomorphic function on X.

 $\sigma f_x = F + f$ Recall that $C|z|^2$ is bounded on $X, \, e^{-2(n+l)log|z-x|^2} = \frac{1}{|z-x|^{2(n+l)}} \geq C_0 > 0$ on X

$$\int_{X} |f|^{2} e^{-\varphi(z)} \leq \frac{1}{C_{1}} \int_{X} |f|^{2} e^{-\varphi(z)} e^{-2(n+l)\log|z-x|} e^{-C|z|^{2}} dV_{\omega} < \infty$$

Hence we have

$$\int_X |F|^2 e^{-\varphi(z)} dV_\omega < \infty$$

 $f = \sigma f_x - F = f_x - F$ is holomorphic in a small neighborhood of x and $f \in \mathscr{I}(h)_x$ We have $\varphi(z) + C|z|^2$ is psh in a neighborhood of \overline{X} , Hence we have

$$\varphi(z) + C|z|^2 \le C_3$$

on X and $\infty > \int_X |f|^2 e^{-\varphi_l dV_\omega} \ge e^{-C_3} \int_X |f|^2 e^{-2(n+l)\log|z-x|} dV_\omega$ Hence we have $f \in m_x^l$ and $f \in m_x^l \cap \mathscr{I}(h)_x$.

$$f_x = \sigma f_x = F + f \in \mathscr{F}_x + m_x^l \cap \mathscr{I}(h)_x$$

Step2 There exists $\gamma \geq 1$ such that

$$\mathscr{F}_x + m_x^{\gamma} \cdot \mathscr{I}(h)_x = \mathscr{I}(h)_x$$

 $By \ Lemma 15$ we have
$$\begin{split} \mathscr{I}(h)_x &= \mathscr{F}_x + \mathscr{I}(h)_x \cap m_x^l \\ &\subset \mathscr{F}_x + m_x^{l-k} \cdot \mathscr{I}(h)_x \\ &\subset \mathscr{F}_x + m_x \cdot \mathscr{I}(h)_x \end{split}$$
 $= \mathscr{I}(h)_x$ It follows that

$$\mathscr{F}_x + m_x^{\gamma} \cdot \mathscr{I}(h)_x = \mathscr{I}(h)_x$$

 $By \ Lemma 15$ we have

$$\mathscr{I}(h)_x = \mathscr{F}_x$$

THEOREM 18. (Nadel vanishing theorem)

Let (X, ω) be a weakly pseudoconvex Kahler manifold. L is a holo line bundle over X equipped with a positive singular Hermitian metric $h = e^{-\varphi}$ such that

$$\Theta_h(L) = i\partial\overline{\partial}\varphi \ge \epsilon\omega$$

for some $\epsilon > 0$. Then

$$H^q(X, K_X \otimes L \otimes \mathscr{I}(h)) = 0$$

for q > 0.

PROOF. We choose a resolution of $K_X \otimes L \otimes \mathscr{I}(h)$ in the following way:

 \mathscr{L}^q =sheaf of germs of (n,q) forms u with values in L with meanable coefficients such that

$$|u|_{h}^{2}, |\overline{\partial}u|_{h}^{2}$$

are locally integrable.

 $\overline{\partial}$ can act on \mathscr{L}^q , $\overline{\partial}: \mathscr{L}^q \to \mathscr{L}^{q+1};$

 \mathscr{L}^q are modules over the structure sheaf of smooth manifold X, hence $H^k(X, \mathscr{L}^q) =$ 0 for k > 0.

 $Ker\{\overline{\partial}: \mathscr{L}^0 \to \mathscr{L}^1\} = K_X \otimes L \otimes \mathscr{I}(h)$ Apply L^2 existence theorem to a ball centered at $x \in X$, we have that the sequence

$$0 \to K_X \otimes L \otimes \mathscr{I}(h) \to \mathscr{L}^0 \to \mathscr{L}^1 \cdots \mathscr{L}^n \to 0$$

is exact and $H^k(X, \mathscr{L}^q) = 0$ for $k \ge 1$. Hence we have

$$H^{q}(X, K_{X} \otimes L \otimes \mathscr{I}(h)) = \frac{Ker\{\overline{\partial} : \mathscr{L}^{q}(X) \to \mathscr{L}^{q+1}(X)\}}{Im\{\overline{\partial} : \mathscr{L}^{q-1}(X) \to \mathscr{L}^{q}(X)\}}$$

Let $\psi \in PSH(X)$ be a smooth exhaustion function on X.

For any $g \in \mathscr{L}^q(X)$ with $\overline{\partial}g = 0$, we can choose a smooth convex function $\chi:\mathbb{R}\to\mathbb{R}$ $(\lim_{t\to\infty}\chi(t)=0\text{fast enough})$ such that

$$\int_X |g|_h^2 e^{-\chi(\psi)} dV_\omega < \infty$$

Take $\tilde{h} = he^{-\chi(\psi)}$ we have

$$\Theta_{\tilde{h}}(L) = \Theta_{h}(L) + i\partial\overline{\partial}\chi(\psi) \ge \epsilon\omega$$

By L^2 existence theorem there exists $f \in L^2_{(n,q-1)}(X,L,loc)$ such that

 $\overline{\partial} f = g$ $\int_X |f|_h^2 e^{-\chi(\psi)} dV_\omega < \infty$ $For <math>x \in X$, $e^{-\chi(\psi)}$ is lower bounded by positive number, hence $|f|_h^2$ is intebrale in a neighborhood of x, hence

$$f \in \mathscr{L}^{q-1}(X)$$

and

$$H^q(X, K_X \otimes L \otimes \mathscr{I}(h)) = 0$$